skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hinkle, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the class of extreme nuclear transients (ENTs), including the most energetic single transient yet found, Gaia18cdj. Each ENT is coincident with its host-galaxy nucleus and exhibits a smooth (<10% excess variability), luminous (2 × 1045to 7 × 1045erg per second), and long-lived (>150 days) flare. ENTs are extremely rare (≥1 × 10–3cubic gigaparsec per year) compared to any other known class of transients. They are at least twice as energetic (0.5 × 1053to 2.5 × 1053erg) as any other known transient, ruling out supernova origins. Instead, the high peak luminosities, long flare timescales, and immense radiated energies of the ENTs are most consistent with the tidal disruption of high-mass (  3 M  ) stars by massive (  10 8   M  ) supermassive black holes (SMBHs). ENTs will be visible to high redshifts (z~ 4 to 6) in upcoming surveys, providing an avenue to study the high-mass end of the SMBH mass distribution, complementing recent studies of actively accreting SMBHs at high redshifts with the James Webb Space Telescope. 
    more » « less
    Free, publicly-accessible full text available June 6, 2026
  2. Abstract Transition disks, with inner regions depleted in dust and gas, could represent later stages of protoplanetary disk evolution when newly formed planets are emerging. The PDS 70 system has attracted particular interest because of the presence of two giant planets in orbits at tens of astronomical units within the inner disk cavity, at least one of which is itself accreting. However, the region around PDS 70 most relevant to understanding the planet populations revealed by exoplanet surveys of middle-aged stars is the inner disk, which is the dominant source of the system’s excess infrared emission but only marginally resolved by the Atacama Large Millimeter/submillimeter Array. Here we present and analyze time-series optical and infrared photometry and spectroscopy that reveal the inner disk to be dynamic on timescales of days to years, with occultation by submicron dust dimming the star at optical wavelengths, and 3–5μm emission varying due to changes in disk structure. Remarkably, the infrared emission from the innermost region (nearly) disappears for ∼1 yr. We model the spectral energy distribution of the system and its time variation with a flattened warm (T≲ 600 K) disk and a hotter (1200 K) dust that could represent an inner rim or wall. The high dust-to-gas ratio of the inner disk, relative to material accreting from the outer disk, means that the former could be a chimera consisting of depleted disk gas that is subsequently enriched with dust and volatiles produced by collisions and evaporation of planetesimals in the inner zone. 
    more » « less
  3. Abstract We present extensive observations of the Type II supernova (SN II) SN 2023ufx, which is likely the most metal-poor SN II observed to date. It exploded in the outskirts of a low-metallicity (Zhost∼ 0.1Z) dwarf (Mg= −13.39 ± 0.16 mag,rproj∼ 1 kpc) galaxy. The explosion is luminous, peaking atMg≈ −18.5 mag, and shows rapid evolution. Ther-band (pseudobolometric) light curve has a shock-cooling phase lasting 20 (17) days followed by a 19 (23) day plateau. The entire optically thick phase lasts only ≈55 days following explosion, indicating that the red supergiant progenitor had a thinned H envelope prior to explosion. The early spectra obtained during the shock-cooling phase show no evidence for narrow emission features and limit the preexplosion mass-loss rate to M ̇ 10 3 Myr−1. The photospheric-phase spectra are devoid of prominent metal absorption features, indicating a progenitor metallicity of ≲0.1Z. The seminebular (∼60–130 days) spectra reveal weak Feii, but other metal species typically observed at these phases (Tiii, Scii, and Baii) are conspicuously absent. The late-phase optical and near-infrared spectra also reveal broad (≈104km s−1) double-peaked Hα, Pβ, and Pγemission profiles suggestive of a fast outflow launched during the explosion. Outflows are typically attributed to rapidly rotating progenitors, which also prefer metal-poor environments. This is only the second SN II with ≲0.1Zand both exhibit peculiar evolution, suggesting a sizable fraction of metal-poor SNe II have distinct properties compared to nearby metal-enriched SNe II. These observations lay the groundwork for modeling the metal-poor SNe II expected in the early Universe. 
    more » « less
  4. Binaries containing a compact object orbiting a supermassive black hole are thought to be precursors of gravitational wave events, but their identification has been extremely challenging. Here, we report quasi-periodic variability in x-ray absorption, which we interpret as quasi-periodic outflows (QPOuts) from a previously low-luminosity active galactic nucleus after an outburst, likely caused by a stellar tidal disruption. We rule out several models based on observed properties and instead show using general relativistic magnetohydrodynamic simulations that QPOuts, separated by roughly 8.3 days, can be explained with an intermediate-mass black hole secondary on a mildly eccentric orbit at a mean distance of about 100 gravitational radii from the primary. Our work suggests that QPOuts could be a new way to identify intermediate/extreme-mass ratio binary candidates. 
    more » « less
  5. ABSTRACT We analyse high-cadence data from the Transiting Exoplanet Survey Satellite (TESS) of the ambiguous nuclear transient (ANT) ASASSN-18el. The optical changing-look phenomenon in ASASSN-18el has been argued to be due to either a drastic change in the accretion rate of the existing active galactic nucleus (AGN) or the result of a tidal disruption event (TDE). Throughout the TESS observations, short-time-scale stochastic variability is seen, consistent with an AGN. We are able to fit the TESS light curve with a damped-random-walk (DRW) model and recover a rest-frame variability amplitude of $$\hat{\sigma } = 0.93 \pm 0.02$$ mJy and a rest-frame time-scale of $$\tau _{DRW} = 20^{+15}_{-6}$$ d. We find that the estimated τDRW for ASASSN-18el is broadly consistent with an apparent relationship between the DRW time-scale and central supermassive black hole mass. The large-amplitude stochastic variability of ASASSN-18el, particularly during late stages of the flare, suggests that the origin of this ANT is likely due to extreme AGN activity rather than a TDE. 
    more » « less
  6. Abstract We present the characterization of the low-gravity M6 dwarf 2MASS J06195260-2903592, previously identified as an unusual field object based on its strong IR excess and variable near-IR spectrum. Multiple epochs of low-resolution (R≈ 150) near-IR spectra show large-amplitude (≈0.1–0.5 mag) continuum variations on timescales of days to 12 yr, unlike the small-amplitude variability typical for field ultracool dwarfs. The variations between epochs are well-modeled as changes in the relative extinction (ΔAV≈ 2 mag). Similarly, Panoramic Survey Telescope and Rapid Response System 1 optical photometry varies on timescales as long as 11 yr (and possibly as short as an hour) and implies comparableAVchanges. Near Earth Object Wide-field Infrared Survey Explorer mid-IR light curves also suggest changes on 6 month timescales, with amplitudes consistent with the optical/near-IR extinction variations. However, near-IR spectra, near-IR photometry, and optical photometry obtained in the past year indicate that the source can also be stable on hourly and monthly timescales. From comparison to objects of similar spectral type, the total extinction of 2MASS J0619-2903 seems to beAV≈ 4–6 mag, with perhaps epochs of lower extinction. Gaia Early Data Release 3 (EDR3) finds that 2MASS J0619-2903 has a wide-separation (1.′2 = 10,450 au) stellar companion, with an isochronal age of 31 10 + 22 Myr and a mass of 0.30 0.03 + 0.04 M. Adopting this companion’s age and EDR3 distance (145.2 ± 0.6 pc), we estimate a mass of 0.11–0.17Mfor 2MASS J0619-2903. Altogether, 2MASS J0619-2903 appears to possess an unusually long-lived primordial circumstellar disk, perhaps making it a more obscured analog to the “Peter Pan” disks found around a few M dwarfs in nearby young moving groups. 
    more » « less
  7. Abstract ASASSN-14ko is a recently discovered periodically flaring transient at the center of the active galactic nucleus (AGN) ESO 253−G003 with a slowly decreasing period. Here, we show that the flares originate from the northern, brighter nucleus in this dual-AGN, post-merger system. The light curves for the two flares that occurred in 2020 May and September are nearly identical over all wavelengths. For both events, Swift observations showed that the UV and optical wavelengths brightened in unison. The effective temperature of the UV/optical emission rises and falls with the increase and subsequent decline in the luminosity. The X-ray flux, by contrast, first rapidly drops over ∼2.6 days, rises for ∼5.8 days, drops again over ∼4.3 days, and then recovers. The X-ray spectral evolution of the two flares differ, however. During the 2020 May peak the spectrum softened with increases in the X-ray luminosity, while we observed the reverse for the 2020 September peak. We found a small change in the period derivative, which seems to indicate that the system does not have a static period derivative and there is some stochasticity in its evolution. 
    more » « less
  8. Abstract We present observations of ASASSN-20hx, a nearby ambiguous nuclear transient (ANT) discovered in NGC 6297 by the All-Sky Automated Survey for Supernovae (ASAS-SN). We observed ASASSN-20hx from −30 to 275 days relative to the peak UV/optical emission using high-cadence, multiwavelength spectroscopy and photometry. From Transiting Exoplanet Survey Satellite data, we determine that the ANT began to brighten on 2020 June 22.8 with a linear rise in flux for at least the first week. ASASSN-20hx peaked in the UV/optical 30 days later on 2020 July 22.8 (MJD = 59052.8) at a bolometric luminosity ofL= (3.15 ± 0.04) × 1043erg s−1. The subsequent decline is slower than any TDE observed to date and consistent with many other ANTs. Compared to an archival X-ray detection, the X-ray luminosity of ASASSN-20hx increased by an order of magnitude toLx∼ 1.5 × 1042erg s−1and then slowly declined over time. The X-ray emission is well fit by a power law with a photon index of Γ ∼ 2.3–2.6. Both the optical and near-infrared spectra of ASASSN-20hx lack emission lines, unusual for any known class of nuclear transient. While ASASSN-20hx has some characteristics seen in both tidal disruption events and active galactic nuclei, it cannot be definitively classified with current data. 
    more » « less
  9. null (Ed.)